258 research outputs found

    Longitudinal Evaluation of Aortic Haemodynamics in Patients after Repair of Aortic Coarctation: A 4D Flow MRI Follow-Up Study

    Full text link
    Background: Patients after repair of Aortic Coarctation (CoA) have high risk of secondary vessel pathologies, regular monitoring is absolutely essential. Objective: To investigate aortic hemodynamics and wall parameters in adolescent patients and young adults after repair of CoA by 4D flow MRI in a longitudinal study. Materials and methods: Time-resolved flow-sensitive 4D MRI was acquired twice in 28 patients (age t1: 14.6±7.8, t2: 18.9±8.3 years) with a mean follow-up duration of 4.4±1.2 years. Quantitative analysis included segmentation of the aorta using 9 manually-placed planes to calculate regional time-averaged absolute Wall Shear Stress (WSS), Peak Velocities (Vmax), Oscillatory Shear Index (OSI) and aortic diameters. Two independent readers assessed blood flow visualisation depicting helical and vertical flow patterns. For statistical analysis, patients who underwent re-intervention and patients with Bicuspid Aortic Valve (BAV) were evaluated separately. Results: Quantitative analysis showed an overall decrease in WSS (mean t1: 0.48±0.13 N/m², t2: 0.33±0.11 N/m²; p0.05). The total number of secondary flow patterns decreased except for an increase in additional local AAo helices. Conclusion: 4D flow MRI enables us to evaluate qualitative and quantitative aortic changes in patients with repaired CoA over time that are not limited to the CoA site. BAV patients exhibit particular characteristics in quantitative parameters

    Bone substitute effect on vascularization and bone remodeling after application of phVEGF165 transfected BMSC

    Get PDF
    VEGF (vascular endothelial growth factor) promotes vascularization and remodeling of bone substitutes. The aim of this study was to examine the effect of distinct resorbable ceramic carriers on bone forming capacities of VEGF transfected bone marrow stromal cells (BMSC). A critical size defect of the radius in rabbits was filled either by a low surface scaffold called beta-TCP (tricalciumphsphate) or the high surface scaffold CDHA (calcium deficient hydroxy-apatite) loaded with autologous BMSC, which were either transfected with a control plasmid or a plasmid coding for phVEGF165. They were compared to unloaded scaffolds. Thus, six treatment groups (n = 6 in each group) were followed by X-ray over 16 weeks. After probe retrieval, the volume of new bone was measured by micro-CT scans and vascularization was assessed in histology. While only minor bone formation was found in both carriers when implanted alone, BMSC led to increased osteogenesis in both carriers. VEGF promoted vascularization of the scaffolds significantly in contrast to BMSC alone. Bone formation was increased in the beta-TCP group, whereas it was inhibited in the CDHA group that showed faster scaffold degradation. The results indicate that the interaction of VEGF transfected BMSC with resorbable ceramic carrier influences the ability to promote bone healing

    Assessment of lung density in pediatric patients using three-dimensional ultrashort echo-time and four-dimensional zero echo-time sequences.

    Get PDF
    PURPOSE Lung magnetic resonance imaging (MRI) using conventional sequences is limited due to strong signal loss by susceptibility effects of aerated lung. Our aim is to assess lung signal intensity in children on ultrashort echo-time (UTE) and zero echo-time (ZTE) sequences. We hypothesize that lung signal intensity can be correlated to lung physical density. MATERIALS AND METHODS Lung MRI was performed in 17 children with morphologically normal lungs (median age: 4.7 years, range 15 days to 17 years). Both lungs were manually segmented in UTE and ZTE images and the average signal intensities were extracted. Lung-to-background signal ratios (LBR) were compared for both sequences and between both patient groups using non-parametric tests and correlation analysis. Anatomical region-of-interest (ROI) analysis was performed for the normal cohort for assessment of the anteroposterior lung gradient. RESULTS There was no significant difference between LBR of normal lungs using UTE and ZTE (p < 0.05). Both sequences revealed a LBR age-dependency with a high negative correlation for UTE (Rs =  - 0.77; range 2.98-1.41) and ZTE (Rs =  - 0.82; range 2.66-1.38)). Signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were age-dependent for both sequences. SNR was higher for children up to 2 years old with 3D UTE Cones while for the rest it was higher with 4D ZTE. CNR was similar for both sequences. Posterior lung areas exhibited higher signal intensity compared to anterior ones (UTE 9.4% and ZTE 12% higher), both with high correlation coefficients (R2UTE = 0.94, R2ZTE = 0.97). CONCLUSION The ZTE sequence can measure signal intensity similarly to UTE in pediatric patients. Both sequences reveal an age- and gravity-dependency of LBR

    Comparison of platelet-rich plasma and VEGF-transfected mesenchymal stem cells on vascularization and bone formation in a critical-size bone defect

    Get PDF
    Both platelet-rich plasma (PRP) and vascular endothelial growth factor (VEGF) can promote regeneration. The aim of this study was to compare the effects of these two elements on bone formation and vascularization in combination with bone marrow stromal cells (BMSC) in a critical-size bone defect in rabbits. The critical-size defects of the radius were filled with: (1) a calcium-deficient hydroxyapatite (CDHA) scaffold + phVEGF(165)-transfected BMSC (VEGF group), (2) CDHA and PRP, or (3) CDHA, autogenous BMSC, and PRP. As controls served: (4) the CDHA scaffold alone and (5) the CDHA scaffold and autogenous BMSC. The volume of new bone was measured by means of micro-CT scans, and vascularization was assessed in histology after 16 weeks. Bone formation was higher in the PRP + CDHA, BMSC + CDHA, and PRP + BMSC + CDHA groups than in the VEGF group (p < 0.05). VEGF transfection significantly promoted vascularization of the scaffolds in contrast to BMSC and PRP (p < 0.05), but was similar to the result of the CDHA + PRP + BMSC group. The results show that VEGF-transfected BMSC as well as the combination of PRP and BMSC improve vascularization, but bone healing was better with the combination of BMSC and PRP than with VEGF-transfected BMSC. Expression of VEGF in BMSC as a single growth factor does not seem to be as effective for bone formation as expanded BMSC alone or PRP which contains a mixture of growth factors. Copyright (C) 2012 S. Karger AG, Base

    Difficulties in diagnosis of SARS-CoV-2 myocarditis in an adolescent

    Full text link
    OBJECTIVES We present an adolescent with cardiogenic shock due to ventricular tachycardia 2 weeks after SARS-CoV-2 infection. Acute myocarditis or myocardial dysfunction is associated with SARS-CoV-2 infection, but diagnosis may be difficult, even including endomyocardial biopsy. CASE REPORT A 15-year-old healthy adolescent was admitted to our hospital 2 weeks after SARS-CoV-2 infection with cardiogenic shock due to ventricular tachycardia. After cardioversion, antiarrhythmic treatment, ventilation, and inotropic support, the severely reduced myocardial function recovered completely within 2 weeks. Cardiac magnetic resonance imaging and cardiac catheterisation including right ventricular endomyocardial biopsy revealed an increased number of CD68+ macrophages in the myocardium, but nested (RT-) polymerase chain reaction (PCR) investigations revealed no viral or bacterial DNA/RNA. DISCUSSION SARS-CoV-2 infection may be associated with myocarditis leading to life-threatening arrhythmia and severe myocardial systolic and diastolic dysfunction, which may be short lasting and completely recover. Although former SARS-Cov-2 infection might suggest SARS-CoV-2-associated myocarditis, definite histological diagnosis including nested PCR investigations remains difficult

    Targeted methods for epigenetic age predictions in mice

    Get PDF
    Age-associated DNA methylation reflects aspect of biological aging-therefore epigenetic clocks for mice can elucidate how the aging process in this model organism is affected by specific treatments or genetic background. Initially, age-predictors for mice were trained for genome-wide DNA methylation profiles and we have recently described a targeted assay based on pyrosequencing of DNA methylation at only three age-associated genomic regions. Here, we established alternative approaches using droplet digital PCR (ddPCR) and barcoded bisulfite amplicon sequencing (BBA-seq). At individual CG dinucleotides (CpGs) the correlation of DNA methylation with chronological age was slightly higher for pyrosequencing and ddPCR as compared to BBA-seq. On the other hand, BBA-seq revealed that neighboring CpGs tend to be stochastically modified at murine age-associated regions. Furthermore, the binary sequel of methylated and non-methylated CpGs in individual reads can be used for single-read predictions, which may reflect heterogeneity in epigenetic aging. In comparison to C57BL/6 mice the single-read age-predictions using BBA-seq were also accelerated in the shorter-lived DBA/2 mice, and in C57BL/6 mice with a lifespan quantitative trait locus of DBA/2 mice. Taken together, we describe alternative targeted methods for epigenetic age predictions that provide new perspectives for aging-intervention studies in mice

    Flow evaluation software for four-dimensional flow MRI: a reliability and validation study

    Full text link
    PURPOSE Four-dimensional time-resolved phase-contrast cardiovascular magnetic resonance imaging (4D flow MRI) enables blood flow quantification in multiple vessels, which is crucial for patients with congenital heart disease (CHD). We investigated net flow volumes in the ascending aorta and pulmonary arteries by four different postprocessing software packages for 4D flow MRI in comparison with 2D cine phase-contrast measurements (2D PC). MATERIAL AND METHODS 4D flow and 2D PC datasets of 47 patients with biventricular CHD (median age 16, range 0.6-52 years) were acquired at 1.5 T. Net flow volumes in the ascending aorta, the main, right, and left pulmonary arteries were measured using four different postprocessing software applications and compared to offset-corrected 2D PC data. Reliability of 4D flow postprocessing software was assessed by Bland-Altman analysis and intraclass correlation coefficient (ICC). Linear regression of internal flow controls was calculated. Interobserver reproducibility was evaluated in 25 patients. RESULTS Correlation and agreement of flow volumes were very good for all software compared to 2D PC (ICC ≥ 0.94; bias ≤ 5%). Internal controls were excellent for 2D PC (r ≥ 0.95, p < 0.001) and 4D flow (r ≥ 0.94, p < 0.001) without significant difference of correlation coefficients between methods. Interobserver reliability was good for all vendors (ICC ≥ 0.94, agreement bias < 8%). CONCLUSION Haemodynamic information from 4D flow in the large thoracic arteries assessed by four commercially available postprocessing applications matches routinely performed 2D PC values. Therefore, we consider 4D flow MRI-derived data ready for clinical use in patients with CHD

    Quantitative evaluation of aortic valve regurgitation in 4D flow cardiac magnetic resonance: at which level should we measure?

    Full text link
    PURPOSE To find the best level to measure aortic flow for quantification of aortic regurgitation (AR) in 4D flow CMR. METHODS In 27 congenital heart disease patients with AR (67% male, 31 ± 16 years) two blinded observers measured antegrade, retrograde, net aortic flow volumes and regurgitant fractions at 6 levels in 4D flow: (1) below the aortic valve (AV), (2) at the AV, (3) at the aortic sinus, (4) at the sinotubular junction, (5) at the level of the pulmonary arteries (PA) and (6) below the brachiocephalic trunk. 2D phase contrast (2DPC) sequences were acquired at the level of PA. All patients received prior transthoracic echocardiography (TTE) with AR severity grading according to a recommended multiparametric approach. RESULTS After assigning 2DPC measurements into AR grading, agreement between TTE AR grading and 2DPC was good (κ = 0.88). In 4D flow, antegrade flow was similar between the six levels (p = 0.87). Net flow was higher at level 1-2 than at levels 3-6 (p < 0.05). Retrograde flow and regurgitant fraction at level 1-2 were lower compared to levels 3-6 (p < 0.05). Reproducibility (inter-reader agreement: ICC 0.993, 95% CI 0.986-0.99; intra-reader agreement: ICC 0.982, 95%CI 0.943-0.994) as well as measurement agreement between 4D flow and 2DPC (ICC 0.994; 95%CI 0.989 - 0.998) was best at the level of PA. CONCLUSION For estimating severity of AR in 4D flow, best reproducibility along with best agreement with 2DPC measurements can be expected at the level of PA. Measurements at AV or below AV might underestimate AR

    Signal Thresholding Segmentation of Ventricular Volumes in Young Patients with Various Diseases—Can We Trust the Numbers?

    Full text link
    In many cardiac diseases, right and left ventricular volumes in systole and diastole are diagnostically and prognostically relevant. Measurements are made by segmentation of the myocardial borders on cardiac magnetic resonance (CMR) images. Automatic detection of myocardial contours is possible by signal thresholding techniques, but must be validated before use in clinical settings. Biventricular volumes were measured in end-diastole (EDVi) and in end-systole (ESVi) both manually and with the MassK application, with signal thresholds at 30%, 50%, and 70%. Stroke volumes (SV) and cardiac indices (CI) were calculated from volumetric measurements and from flow measured in the ascending aorta and the main pulmonary artery, and both methods were compared. Reproducibility of volumetric measurements was tested in 20 patients. Measurements were acquired in 94 patients aged 15 ± 9 years referred for various conditions. EDVi and ESVi of both ventricles were largest with manual segmentation and inversely proportional to the MassK threshold. Manual and k30 SV and CI corresponded best to flow measurements. Interobserver variability was low for all volumes manually and with MassK. In conclusion, manual and 30% threshold-based biventricular volume segmentation agree best with two-dimensional, phantom-corrected phase contrast flow measurements in a young cardiac referral population and are well reproducible
    • …
    corecore